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1. Introduction. 
 
Good performance is crucial to many applications. Program performance tuning is a multifaceted 
activity grounded in measurement and analysis. Measurement provides an objective basis for 
assessment and comparison of the performance aspects of program design and implementation. 
 
AMD processors offer extensive features to enable performance measurement. These features 
use hardware counters to measure performance-related events caused by user- or kernel-level 
software. Event counts help a systems engineer or software developer to identify the likely cause 
of a performance issue. 
 
The purpose of this technical note is to describe a collection of basic measurements that 
engineers and developers can take using the performance monitoring features of Athlon™ 64, 
AMD Opteron™, and AMD Phenom™ processors. Section 2 recommends online resources 
describing processor-specific microarchitecture, performance events, and performance analysis 
tools. Section 3 provides background information about the measurement technique called 
"performance counter sampling." Section 4 describes the performance measurements. Section 5 
illustrates the use of a few common measurements. 
 
 

2. Resources. 
 
A number of on-line resources are available to assist engineers with performance measurement, 
analysis, and improvement. Find these resources, and many more, at AMD Developer Central: 
 

http://developer.amd.com 
 
Performance measurement hardware and events are described in the "BIOS and Kernel 
Developer's Guide,” or BKDG.  The BKDG is the main resource for details about hardware events 
and what they measure. These details include important information about conditions affecting 
event counts (i.e., what is (and is not) included in an event count). The BKDG also describes how 
to configure the "unit masks" associated with each event to narrow measurement to more specific 
hardware conditions. AMD publishes a version of the BKDG for each processor family. Find 
information about performance events supported by quad-core AMD Opteron and AMD Phenom 
processors in the “BIOS and Kernel Developer’s Guide for AMD Family 10h Processors,” 
Publication #31116: 
 

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/31116.pdf 
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Performance guidelines and tips for AMD64 processors are in the "Software Optimization Guide" 
(SWOG). The software optimization guide is a resource for engineers and developers who wish 
to tune their programs to the processor microarchitecture to achieve the best performance. The 
guide contains a brief introduction to processor microarchitecture and tips and coding techniques 
all performance engineers and software developers will find useful. Like the BKDG, AMD 
publishes a software optimization guide for each processor family. Find information about code 
tuning for quad-core AMD Opteron and AMD Phenom processors in the “Software and 
Optimization Guide for AMD Family 10h Processors,” Publication #40546: 
 

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf 
 
There are many techniques for program performance tuning on AMD Athlon 64 and  
AMD Opteron Processors in Michael Wall’s article "Performance Optimization of 64-bit 
Windows® Applications for AMD Athlon 64 and AMD Opteron Processors using Microsoft® 
Visual Studio 2005." Although this paper addresses Microsoft Visual Studio 2005 specifically, 
many of the techniques are generic and employable when working with other compilers or 
operating systems. 
 

http://developer.amd.com/pages/101120051_18.aspx 
 
The Developer Tools page at AMD Developer Central lists a wide range of tools -- from compilers 
to libraries to simulators -- that can improve the performance of programs on AMD processors. 
The list includes several profiling tools to measure and analyze the performance and behavior of 
application programs.  
 

http://developer.amd.com/tools/Pages/default.aspx 
 
AMD provides its own profiling tool, AMD CodeAnalyst™ Performance Analyzer, through AMD 
Developer Central. AMD CodeAnalyst is available for both the Windows and Linux® operating 
systems. AMD CodeAnalyst for Linux is open source, making it an attractive, low-cost option for 
university education as well as industrial-strength analysis. Links to AMD CodeAnalyst for 
Windows and CodeAnalyst for Linux are: 
 

http://developer.amd.com/tools/codeanalystwindows/Pages/default.aspx 
http://developer.amd.com/tools/codeanalystlinux/Pages/default.aspx 

 
A brief introduction to AMD CodeAnalyst is in the white paper, "An introduction to analysis and 
optimization with AMD CodeAnalyst," by P.J. Drongowski. This paper uses AMD CodeAnalyst in 
Section 5 to illustrate the use of event-based performance measurements. Please note, however, 
that engineers and developers can use the performance measurements described in this paper 
with other profiling tools like OProfile, the Performance API (PAPI), or SunStudio on Solaris™. 
 

http://developer.amd.com/pages/111820052_9.aspx 
 
 

3. Performance counter sampling. 
 
The AMD Athlon 64, AMD Opteron, and AMD Phenom processors provide four performance 
counters to measure the hardware events caused by application programs and system software. 
When you use a profiling tool like AMD CodeAnalyst, it configures these counters to measure 
specific hardware events like the number of CPU clocks, the number of instructions retired, data 
cache misses, and so forth. Configuration information consists of an event select value and a unit 
mask value. The event select value specifies which hardware event to measure.  The unit mask 
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modifies the effect of the event select value in certain cases and narrows measurement to a 
specific subset of the hardware conditions constituting an event. 
 
There are two main approaches to event counting: caliper mode and performance counter 
sampling.  The caliper approach reads the event count before and after a performance-critical 
region of code. The before-count is subtracted from the after-count to yield the number of events 
that occurred between the before and after points. (PAPI is a tool that readily supports this 
model.) This approach, which acts like a caliper, measures the number of events, but does not 
indicate how the events are distributed across the code region. Caliper-style measurement 
cannot isolate a performance issue to a single instruction or source-level operation. This style of 
measurement often requires a change to the program source code to take measurements at key 
points. 
 
In performance counter sampling, the event counter is preloaded with a threshold or limit count. 
The performance measurement hardware counts events until reaching the threshold and then 
causes an interrupt. The interrupt service routine (ISR) records the counter "overflow" as a 
sample that includes the type of event that occurred, the process ID of the program that was 
executing at the time of the interrupt, the thread ID of the executing thread, and the instruction 
pointer (IP). The profiling tool processes the samples and builds up a statistical histogram -- a 
profile -- of how events of a particular type are distributed across the source lines and/or 
instructions in the application program. 
 
The threshold or limit count is often called the "sampling period" because a sample is taken 
periodically based on the magnitude of the preloaded limit. If the sampling period for a particular 
event is 5,000, then it will generate one sample for each 5,000 occurrences of that event. Thus, 
developers can use the sampling period as a scale factor or weight to convert a sample count into 
an estimate of the raw number of events that occurred. Scaling and weight are important because 
it is only meaningful to compare sample or event counts that have the same weight or to 
perform arithmetic on sample or event counts that have the same weight. 
 
Engineers and developers must scale and normalize sample counts with different sampling 
periods with respect to each other before comparison or computation. The formulas used 
throughout this paper assume appropriate normalization of sample counts. 
 
Choosing the sampling period is a trade-off among collection overhead (the time spent collecting 
samples), the intrusive effects of measurement, and the desired resolution and accuracy of 
statistical results. A smaller sampling period means taking samples more frequently. When you 
use a smaller sampling period: 
 

• The statistical result is more accurate because more samples are taken in the same time 
period. 

 

• Resolution is higher because the time between samples is shorter. 
 

• Collection overhead is higher because more time is spent processing a larger number of 
samples in the same time period. 

 

• Intrusion is higher due to the pollution of caches, translation lookaside buffers (TLBs), 
and branch history tables. The overall memory trace will be different as well. 

 
It is common practice to use a smaller sampling period for less frequent events like cache misses 
and to use a larger sampling period for high-frequency events like retired instructions or CPU 
clocks (processor cycles). We suggest a sampling period of 50,000 for low-frequency events and 
a sampling period of 500,000 for high-frequency events. 
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Before turning to the measurements themselves, we need to explain the effects of skid on 
profiles. Ideally, the instruction pointer recorded with a sample is the IP of the instruction that 
actually caused the event. However, the IP recorded when a performance counter overflow 
causes an interrupt is the address of the instruction to be started after returning from the sampling 
interrupt. Highly parallel and out-of-order machines might execute many instructions between the 
time the hardware event occurs and delivery of the interrupt.  Thus, attribution of the event “skids” 
to the instruction specified by the restart IP, not the instruction that caused the event. If the 
degree of skid varies then, over time, events are incorrectly attributed to instructions executed 
after the actual culprit. In the case of the AMD Family 10h processor, as many as 72 operations 
may be in flight and skid may be substantial.  
 
When analyzing results collected through performance counter sampling, we need to recognize 
that event attribution to individual instructions is imprecise. Measurements computed over a 
region of frequently executed instructions are generally valid. Therefore, it is usually meaningful 
to discuss instructions per cycle (IPC) for a frequently executed loop or function, but not for an 
individual instruction. 
 
 

4. Event-based performance measurements. 
 
This section describes performance measurements we find most useful in practice. They should 
help performance engineers and software developers identify the most common performance 
issues. Apply them to event data collected using either caliper-like measurements or performance 
counter sampling. 
 
Table 1 summarizes the performance measurements. We classify the measurements into these 
major categories: 
 

• Efficiency measurements gauge overall performance of programs, functions, and critical 
code regions like inner loops. A low IPC figure or low memory bandwidth may indicate 
the presence of an underlying performance issue. 

 

• Memory access measurements assess the use of instruction and data caches. 
Temporal locality and spatial locality are important to good program performance. 
Instruction cache misses disrupt the flow of instructions into the processor pipeline. Data 
cache misses slow the flow of data into the pipeline. The result, in either case, is a stalled 
pipeline that must wait for instructions or data to arrive. Stalls degrade performance. 
Employ cache-friendly algorithms and code tuning techniques in performance-critical 
code. 

 

• Address translation measurements appraise the use of instruction and data translation 
lookaside buffers (TLBs). TLBs provide fast access to the page mapping information that 
translates virtual memory addresses to physical addresses. Concerns about temporal 
and spatial locality also apply to TLB access and use. 

 

• Control transfer measurements deal with the processor’s ability to predict the target 
address of a conditional branch, indirect branch, or subroutine return. Processors depend 
on a steady flow of work to keep functional units busy. They accomplish this by predicting 
the outcome of branches and subroutine returns -- instructions that break the flow of work 
to do. Based on the prediction, work starts speculatively in the functional units and 
memory subsystem. If the prediction is wrong, the speculative work must be discarded 
and the flow of instructions must be restarted. This is expensive. 
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• The final category addresses certain special cases that occur in practice. Avoid access 
to unaligned data because access to naturally aligned data is faster. Scientific 
programmers often want to study the number and flow of floating point (FP) operations, 
including the number of FP exceptions that interrupt the flow of FP operations in the 
pipeline. 

 
Many of the measurements are expressed as a rate such as the number of L1 data cache misses 
per retired instruction. A rate helps us to judge the severity of a problem better than a raw event 
count. For example, 1,000 cache misses per 1,000,000 retired instructions is not a problem, but 
1,000 cache misses per 10,000 retired instructions is a major problem. At that rate, a cache miss 
occurs every 10 retired instructions! 
 

Table 1: Summary of performance measurements. 
 

Category Subsystem Measurements 

Efficiency CPU Instructions per cycle (IPC) 

(Section 4.2) (Section 4.2.1) Cycles per instruction (CPI) 

 Memory Read data bandwidth 

 (Section 4.2.2) Write data bandwidth 

  DRAM bandwidth 

Memory access L1, L2, L3 caches Cache request rate 

(Section 4.3)  Cache miss rate 

  Cache miss ratio 

Address translation DTLB and ITLB L1 TLB request rate 

(Section 4.4)  L1 TLB miss rate 

  L1 TLB miss ratio 

  L2 TLB request rate 

  L2 TLB miss rate 

  L2 TLB miss ratio 

Control transfer Branches Branch rate 

(Section 4.5) (Section 4.5.1) Branch misprediction rate 

  Branch misprediction ratio 

  Branch taken rate 

  Branch taken ratio 

  Instructions per branch 

 Near return Near return rate 

 (Section 4.5.2) Return stack miss rate 

  Return stack misprediction ratio 

  Instructions per call 

Special cases Memory Misaligned access rate 

(Section 4.6) (Section 4.6.1) Misaligned access ratio 

 Floating point FPU op rate 

 (Section 4.6.2) FP/MMX rate 

  FLOPS rate 

  Overall FP exception rate 

  FP exception rate 



 

 6 © 2008 Advanced Micro Devices, Inc. 

 
 
 
 

4.1. Format and terminology. 
 
This paper breaks down the description of each event-based performance measurement into four 
sections: 
 

• Applicability: when to apply a set of performance measurements. 
 

• Collection: what events to collect to compute the measurements. 
 

• Formulas: how to compute derived measurements from the collected events. 
 

• Interpretation: how to interpret the results. 
 
All formulas assume normalization of event sample counts such that all quantities have a 
comparable unit weight. 
 
This article uses the term “system memory” when describing certain performance events and 
measurements. Memory is organized into multiple levels, with the L1 data and instruction caches 
at the lowest level and dynamic random access memory (DRAM) at the highest level. Each core 
has its own L1 data and instruction caches and a unified L2 cache. When a read or write request 
cannot be satisfied by the L1 or L2 caches belonging to a core, the request is sent to the higher 
levels of the memory subsystem through the system interface provided by the Northbridge. The 
request may be satisfied: 
 

• By an L1 or L2 cache in a different core within the same local multi-core processor,  
 

• By the optional shared L3 cache within the same local processor,  
 

• By local DRAM, 
 

• By an L1, L2, or optional L3 cache in a different, remote processor, or 
 

• By remote DRAM. 
 
“System memory” collectively refers to the data sources accessed via the system interface. Local 
data sources are generally preferred because remote data sources must be accessed over one 
or more HyperTransport™ technology links. 
 

4.2. Efficiency measurements. 
 
Event-based performance measurements in this category help determine if there is an underlying 
performance issue that needs further investigation. 
 
 
 
 



 

 7 © 2008 Advanced Micro Devices, Inc. 

4.2.1. Instructions per cycle (IPC). 

 
Applicability. Instructions per cycle is a general measure of computational efficiency. IPC 
indicates the number of completed instructions per CPU clock cycle. Engineers and developers 
often use IPC as a measure of instruction-level parallelism (ILP) -- the number of operations that 
can be performed in parallel. IPC may be computed for a program, module, function, or code 
region. Due to skid, IPC for individual instructions is rarely accurate. Cycles per instruction (CPI) 
is the reciprocal of IPC. 
 
IPC is usually measured before and after tuning. Measurements taken before tuning establish a 
baseline. Measurements taken after tuning show the overall effect of code or algorithmic changes 
on performance. 
 
Collection. Computation of IPC requires collection of only two basic events: 
 

Event select Unit mask Event abbreviation Event 

0x76 N/A CPU_clocks CPU Clocks Not Halted 

0xC0 N/A Ret_instructions Retired Instructions 

 
CPU clocks and retired instructions are both regarded as high-frequency instructions. We 
recommend a sampling period of 500,000 for each event. No special unit mask configuration 

(N/A) is required and the unit mask values should be set to 0x00. 

 
The CPU run state affects the CPU Clocks Not Halted event. Operating systems handle idling in 
one of two ways: 
 

• By temporarily halting the CPU until there is work to do, or 
 

• By executing an idle loop. 
 
In the first case, the CPU clock halts. CPU clock events are not counted and the resulting CPI 
and IPC figures directly reflect the behavior of the workload. In the second case, the CPU clock 
continues to run as the idle loop executes. CPI and IPC figures then include the effects of the idle 
loop. The idle loop usually has good CPI and IPC, which produces optimistic system-level values. 
The effects of the idle loop must be isolated and mitigated to state the correct CPI and IPC for the 
workload.  
 
Formulas. IPC is simply the ratio of instructions to CPU clock cycles. 
 
  IPC = Ret_instructions / CPU_clocks 

 
The inverse of this ratio, cycles per instruction, is sometimes used as well. 
 
  CPI = CPU_clocks / Ret_instructions 

 
Interpretation. Higher values of IPC indicate that more useful work (successfully completed 
retired instructions) is being performed in a given time unit (a CPU clock cycle). Low values of 
IPC indicate the presence of some performance-inhibiting factors such as poor temporal or 
spatial locality, mispredicted branches, use of unaligned data, or floating point exceptions. 
 
In addition to IPC, the distribution of CPU clock cycles and retired instructions across program 
regions is itself informative. The distribution of CPU clock cycles shows those parts of the 
program taking the most time while the distribution of retired instructions show the most 
frequently executed code regions and paths in the program. Identification of a hot spot (a 
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frequently executed or time-consuming code region) allows analysis and tuning efforts to focus on 
the hot spot with a higher potential payoff for the investment. 
 
 

4.2.2. Memory bandwidth. 

 
Applicability. These measurements help assess memory bandwidth utilization. Apply bandwidth 
measurements when the application moves a large amount of data between memory and the 
processor. Scientific and engineering applications, for example, are often memory-intensive and 
operate on large data structures, creating a high volume of data traffic. 
 
Collection. Collect data for events in this table to estimate actual memory bandwidth: 
 

Event select Unit mask Event abbreviation Event 

0x76 N/A CPU_clocks CPU Clocks Not Halted 

0x6C 0x07 System_read 
System Read Responses by 
Coherency State 

0x6D 0x01 System_write 
Quadwords Written to System* 
Octwords Written to System* 

0xE0 FAMDEP DRAM_accesses DRAM Accesses 

 

* The event with select value 0x6D has the name Octwords Written to System on AMD Family 

10h processors. The event has the name Quadwords Written to System on other processors. 
 
All these events are regarded as high-frequency events. We recommend a sampling period of 
500,000 for all four events. 
 
The memory controller unit measures DRAM accesses. Certain performance counter 
configuration constraints may need enforcement on multi-core systems (see the BKDG for 
configuration details).  
 
The unit mask value for the DRAM Accesses event is processor family-dependent (FAMDEP). 
Certain implementations of AMD Family 10h processors have two memory controllers; other 
processors have one memory controller (see the appropriate, processor-specific BKDG for more 
information).  Each memory controller counts the number of read and write requests it fulfills. A 
separate performance counter must be configured for each memory controller. Measure these 

events on processors with two memory controllers (DCT0 and DCT1): 

 

Event select Unit mask Event abbreviation Event 

0xE0 0x07 DRAM_accesses_0 DRAM Accesses [DCT0] 

0xE0 0x38 DRAM_accesses_1 DRAM Accesses [DCT1] 

 
Measure this event on processors with one memory controller: 
 

Event select Unit mask Event abbreviation Event 

0xE0 0x07 DRAM_accesses DRAM Accesses 

 
Formulas. First, estimate the number of bytes transferred. AMD Family 10h processors perform 
16-byte write transfers and these formulas apply: 
 
  Read_bytes_transferred = (System_read * Period) * 64 
  Write_bytes_transferred = (System_write * Period) * 16 
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  DRAM_bytes_transferred = (DRAM_accesses * Period) * 64 

 
For AMD Family 10h processors with two memory controllers, the total number of DRAM access 
events is the number of access requests fulfilled by both memory controllers: 
 
  DRAM_accesses = DRAM_accesses_0 + DRAM_accesses_1 

 
Other processors perform 8-byte write transfers; instead, use these formulas: 
 
  Read_bytes_transferred = (System_read * Period) * 64 
  Write_bytes_transferred = (System_write * Period) * 8 
  DRAM_bytes_transferred = (DRAM_accesses * Period) * 64 

 
Always remember to normalize event samples by the sampling period before performing 
computations on event data. For clarity, normalization by the sampling period is explicit in these 
formulas. The three immediately preceding formulas assume a 64-bit DRAM granularity. 
 
Bandwidth is the number of bytes transferred per second: 
 
  Read data bandwidth (B/s) = Read_bytes_transferred / Seconds 
  Write data bandwidth (B/s) = Write_bytes_transferred / Seconds 
  DRAM bandwidth (B/s) = DRAM_bytes_transferred / Seconds 

 
We use the CPU Clocks Not Halted event to measure elapsed time. This formula gives elapsed 
time: 
 
  Seconds = (CPU_clocks * Period) / Clock_frequency 
 
      Where Period is the sampling period, and 
            Clock_frequency is the platform CPU clock frequency 

 
Measuring elapsed time in this way is convenient, but it has certain drawbacks. As the event 
name indicates, CPU clock events are not counted when the CPU clock is halted. The operating 
system may halt the clock when the system is idle. The operating system may also adjust the 
clock frequency. Both of these techniques reduce power. However, they affect the accuracy of 
the CPU Clocks Not Halted event as a time reference. We recommend using a reliable time 
reference such as the operating system clock or time-stamp counter (TSC).  
 
Interpretation. These measures show the amount of system memory bandwidth used for reading 
and writing data. The communication capacity of the test platform's memory subsystem and 
DRAM controller(s) limits bandwidth. Please see platform specifications or use a benchmark 
program such as Stream to determine maximum attainable bandwidth: 
 

http://www.cs.virginia.edu/stream/  
 
If actual memory bandwidth is much less than potential sustainable bandwidth, then developers 
should take steps to improve the memory system behavior of the application. These steps include 
improving the data access pattern, prefetching, software pipelining, and use of streaming stores 
(non-temporal MOVNTPS and MOVNTQ instructions). 
 
The cores in a multi-core processor share the on-chip memory controllers. Thus, the cores split 
the available DRAM bandwidth. 
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4.3. Memory access.  

4.3.1. Data cache misses and miss ratio. 

 
Applicability. Good cache behavior is important to good performance. Data caches favor 
programs that exhibit good spatial and temporal locality when accessing data. Always measure 
data cache behavior. 
 
Collection. Compute data cache miss statistics from these four events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x40 N/A DC_accesses      Data Cache Accesses 

0x42 0x1E DC_refills_L2 Data Cache Refills from L2 

0x43 0x1E DC_refills_sys Data Cache Refills from System 

 
 
We suggest a sampling period of 500,000 for retired instruction events and data cache accesses. 
We suggest a sampling period of 50,000 for data cache refills.  Remember to normalize the 
results before using the formulas  in this section. 
 
Formulas. Behavior at a given level in the memory hierarchy can often be characterized by 
studying the inflow of data (refills) into the level. The number of data cache misses is equal to the 
number of refill operations performed to satisfy data cache misses. There are two sources of refill 
operations for the L1 data cache: the unified level 2 (L2) cache and system memory. Thus, the 
number of data cache misses is equal to the sum of the refill operations from L2 cache and 
system memory: 
 
  DC_misses = DC_refills_L2 + DC_refills_sys 

 
There are three derived measurements: 
 
  Data cache request rate = DC_accesses / Ret_instructions 
  Data cache miss rate = DC_Misses / Ret_instructions 
  Data cache miss ratio = DC_Misses / DC_accessess 

 
A simplified data collection scheme measures these events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x40 N/A DC_accesses      Data Cache Accesses 

0x41 N/A DC_misses Data Cache Misses 

 
This set of events measures data cache misses directly. However, the Data Cache Misses event 
is subject to variation due to streaming store activity (see the BKDG for more information). Use 
the simplified form as an estimate when conserving performance counters at runtime.  The refill 
method is preferred when greater accuracy is required. 
 
Interpretation.  The data cache request rate shows the frequency of L1 data cache requests for 
a given set of retired instructions. The cache miss rate indicates the frequency of miss operations 
for the same set of retired instructions. The miss rate should be much less than the access rate. 
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The data cache miss ratio shows the portion of data accesses that missed in the L1 data cache.  
The data cache miss ratio should be as low as possible. 
 
Refill operations from system memory are more expensive than refills from L2 cache (90 or more 
cycles from DRAM versus 12 cycles from L2 cache, depending on processor implementation). 
The ratio of refills from system memory to data cache misses, 
 
  DC_refills_sys / DC_misses 

 
shows the portion of data cache misses that went to system memory for resolution. If one 
instruction executes per cycle, then an access to DRAM is worth 90 lost instructions (worst case 
with no overlap of memory operations and computation). Avoid refills from system memory by 
choosing cache-friendly algorithms and coding techniques. 
 
There are three categories of cache misses: 
 

1. Compulsory misses occur on first reference to a data item. 
 

2. Capacity misses occur when the working set exceeds the cache capacity. 
 

3. Conflict misses occur when a data item is referenced after the cache line containing the 
item was evicted. 

 
Data prefetching can help reduce compulsory misses. Reduce capacity misses by decreasing the 
size of the program working set or through improved data layout (moving data items closer 
together). Eliminate conflict misses by relocating data structures to memory locations that do not 
map to the same cache lines. 
 
Caches favor programs with regular sequential access through memory. Algorithm and program 
redesign may be needed to improve the memory access pattern (e.g., to use small sequential 
strides through memory). Changing data layout to place widely separated data items into the 
same cache line may improve cache efficiency. 
 
 

4.3.2. Instruction cache misses and miss ratio. 

 
Applicability. Superscalar microprocessors depend on a steady flow of instructions into the 
pipeline. The instruction cache holds the most recently fetched x86 instructions and is able to 
provide those instructions to the pipeline when needed quickly. Engineers and developers can 
obtain good performance when critical code fits in the instruction cache and is reused, as in the 
case of a frequently executed inner loop or a group of subroutines that call each other frequently. 
 
Collection. Compute instruction cache measurements using these four events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x80 N/A IC_fetches       Instruction Cache Fetches 

0x82 N/A IC_refills_L2 Instr Cache Refills from L2 

0x83 N/A IC_refills_sys Instr Cache Refills from System 

 
We suggest a sampling period of 500,000 for retired instructions and instruction cache fetches. 
We recommend a sampling period of 50,000 for instruction cache refills.  Remember to normalize 
the results before using the formulas in this section. 
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Developers may use the Instruction Cache Misses event (select 0x81) in place of the two refill 

events. The sum of the refill events should be roughly equal to the Instruction Cache Misses 
event. This alternative approach conserves performance counters at runtime. 
 
Formulas. The number of instruction cache misses is equal to the sum of instruction cache refill 
requests to the unified L2 cache and system memory: 
 
  IC_misses = IC_refills_L2 + IC_refills_sys 

 
A refill operation must satisfy every L1 instruction cache miss. 
 
There are three derived measurements: 
 
  Instruction cache request rate = IC_accesses / Ret_instructions 
  Instruction cache miss rate = IC_Misses / Ret_instructions 
  Instruction cache miss ratio = IC_Misses / IC_accesses 

 
Interpretation. The instruction cache request rate indicates the number of instruction cache 
accesses made for a set of retired instructions. The instruction cache miss rate shows how 
frequently an instruction cache miss occurred for the same group of retired instructions. The 
instruction cache miss ratio indicates the portion of instruction cache assesses that caused a 
miss, thereby resulting in a refill from L2 cache or system memory. 
 
Low instruction cache miss rates and ratios are desirable. 
 
As in the case of the L1 data cache, refills from system memory are more expensive than refills 
from L2 cache. Avoid refills from system memory. 
 
Reduce instruction cache misses by improving code layout. Frequently executed, related code 
regions should be placed together to improve spatial locality.  This may involve rearranging 
subroutines to move related subroutines near each other and to place infrequently executed 
subroutines farther away.  For example, place exception-handling routines farther away because 
exceptions are infrequent. Software developers should also check to see if procedure inlining or 
loop unrolling has produced code that no longer fits into the L1 instruction cache (64 Kbyte 
maximum capacity). 
 
 

4.3.3. Level 2 (L2) cache misses and miss ratio. 

 
The L2 cache is a unified cache containing both instructions and data. On AMD Athlon 64,  
AMD Opteron, and AMD Phenom processors, the L1 caches and the L2 cache use an "exclusive" 
line management scheme. A line of cache data is in either the L1 or L2 cache, but not both 
caches at the same time. The exclusive line management scheme makes better use of cache 
space than an "inclusive" scheme that may have two redundant copies of the same line in the 
caches. 
 
As mentioned earlier, a refill from the L2 cache or from system memory satisfies an L1 cache 
miss. When a line of data is retrieved from system memory, it is written into the L1 cache, but not 
the L2 cache. This maintains exclusivity. The evicted L1 cache line -- the cache line replaced with 
a new block of bytes from memory -- is written into the L2 cache, maintaining exclusivity. The 
evicted cache line is sometimes called a "victim." 
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There are two different methods for obtaining L2 cache memory measurements.  The direct 
method uses fewer events and is easier to collect and compute.  The indirect method is more 
accurate, but requires the collection of more events and involves a few more computations.  
Sections 4.3.3.1 and 4.3.3.2 describe both methods. 
 

4.3.3.1. L2 cache measurements: Direct method 

 
Applicability. Use this method to measure L2 cache behavior when less accuracy is required. All 
event data can be collected in a single run. 
 
Collection. Collect these events to measure L2 behavior: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x7D 0x07 L2_requests      Requests to L2 Cache 

0x7E 0x07 L2_misses L2 Cache Misses 

0x7F 0x03 L2_fill_write L2 Fill / Writeback 

 
We suggest a sampling period of 500,000 for the retired instructions event and a sampling period 
of 50,000 for the L2 cache events. 
 
Formulas. These are derived measurements for L2 cache performance: 
 
  L2 request rate = (L2_requests + L2_fill_write) / Ret_instructions 
  L2 miss rate = L2_misses / Ret_instructions 
  L2 miss ratio = L2_misses / (L2_requests + L2_fill_write) 

 
Interpretation. The events used to compute these measures include extra requests due to retries 
associated with address or resource conflicts. In some cases, the extra requests can dominate 
the event counts, but are not a direct indication of performance impact. The events used in the 
indirect method better reflect actual cache line movement. 
 

4.3.3.2. L2 cache measurements: Indirect method 

 
Applicability. Use this method to measure L2 cache behavior when requiring greatest accuracy 
or a breakout of L2 cache activity. Multiple program runs are required to collect all of the needed 
event data when measuring only four performance events per run. 
 
Collection. Collect these events to measure behavior of the unified L2 cache using the indirect 
method: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x40 N/A DC_accesses      Data Cache Accesses 

0x42 0x1E DC_refills_L2 Data Cache Refills from L2 

0x43 0x1E DC_refills_sys Data Cache Refills from System 

0x80 N/A IC_fetches Instruction Cache Fetches 

0x82 N/A IC_refills_L2 Instr Cache Refills from L2 

0x83 N/A IC_refills_sys Instr Cache Refills from System 
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0x7D 0x04 L2_requests_TLB Requests to L2 Cache [TLB fill] 

0x7E 0x04 L2_misses_TLB L2 Cache Misses [TLB fill] 

 
Formulas. There are three sources of requests to the L2 cache: the L1 data cache, the L1 
instruction cache, and the Page Table Walker that handles TLB misses. An L2 cache request is 
made when an access misses in the L1 data cache, when an access misses in the L1 instruction 
cache, or when the Page Table Walker issues a request: 
 
  IC_misses = IC_refills_L2 + IC_refills_sys 
  DC_misses = DC_refills_L2 + DC_refills_sys 
  L2_requests = IC_misses + DC_misses + L2_requests_TLB 

 
This formula gives the L2 cache request rate: 
 
  L2 request rate = L2_requests / Ret_instructions 

 
Misses in the L2 cache occur when a miss in the L1 instruction cache is refilled from system 
memory, when a miss in the L1 data cache is refilled from system memory, or when a Page Table 
Walker request misses: 
 
  L2_misses = IC_refills_sys + DC_refills_sys + L2_misses_TLB 

 
The L2 cache miss rate and miss ratio computations are: 
 
  L2 miss rate = L2_misses / Ret_instructions 
  L2 miss ratio = L2_misses / L2_requests 

 
Compute the proportion of unified L2 cache requests from the L1 instruction cache, L1 data 
cache, and Page Table Walker with these formulas: 
 
  L2 instruction fraction = IC_misses / L2_requests 
  L2 data fraction = DC_misses / L2_requests 
  L2 page table fraction = L2_requests_TLB / L2_requests 

 
Interpretation. Data or instructions are written to the unified L2 cache when evicted from their 
respective L1 caches.  If data or instructions are not found in L2 cache to satisfy a miss in an L1 
cache, the performance engineer must consider if the miss is compulsory (first access to a data 
item) or a capacity or conflict miss. Given the exclusive nature of the L1 and L2 caches, a 
capacity miss may indicate poor temporal locality such that a data item (or its neighbors) is 
reused too long after its last use. 
 

4.3.4. L3 cache. 

 
Applicability. Level 3 (L3) cache is available on certain implementations of AMD Family 10h 
processors (see the appropriate, processor-specific BKDG for details). The L3 cache is a non-
inclusive victim cache holding cache lines evicted from the L2 cache. All cores in a multi-core 
processor dynamically share the L3 cache; its dynamic allocation scheme provides efficient data 
sharing between cores. 
 
Collection. Use these events to measure L3 cache behavior: 
 

Event select Unit mask Event abbreviation Event 

0x0C0 N/A Ret_instructions Retired Instructions 
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0x4E0 0xF7 L3_requests      Read Requests to L3 Cache 

0x4E1 0xF7 L3_misses L3 Cache Misses 

 
We recommend a sampling period of 500,000 for the Retired Instructions event, and a sampling 
period of 50,000 for the L3 cache events. 
 
Use the unit mask associated with the L3 cache events to measure L3 cache requests and 
misses by cache coherency state (exclusive, shared, and modified states) and by core. An L3 
event breakdown by core can identify one or more specific cores with a high request or miss rate 
(see the BKDG for additional configuration information). 
 
Formulas. Derive L3 cache measurements using these formulas: 
 
  L3 request rate = L3_requests / Ret_Instructions 
  L3 miss rate = L3_misses / Ret_Instructions 
  L3 miss ratio = L3_misses / L3_requests 

 
Interpretation. A high L3 cache miss rate indicates poor spatial and/or temporal locality. Since 
the L3 is a unified cache, it contains both instructions and data, either of which may be accessed 
with poor locality. Developers may need to reorganize the program and its data in memory to 
change the code or data layout to obtain better cache behavior (a lower miss rate). Investigate 
and modify data access patterns to favor reuse and small sequential strides. 
 
 

4.4. Address translation. 
 
Translation lookaside buffers help the processor translate virtual addresses to physical 
addresses. They hold the most recently used page mapping information in fast, chip-resident 
memory to accelerate address translation. 
 
The processor microarchitecture provides separate TLBs for instructions and data. Each TLB is a 
two-level structure with a level 1 (L1) TLB and a larger, level 2 (L2) TLB (see the appropriate 
processor-specific Software Optimization Guide for more details). Each TLB entry contains page 
mapping information for a limited range of virtual addresses. Since the capacity of each TLB level 
is also limited, there are only so many pages that can be touched directly without incurring a TLB 
miss. 
 
When an L1 TLB miss occurs, page mapping information is sought in the corresponding L2 TLB. 
If found, the entry is written to the L1 TLB. If not found, the Page Table Walker is invoked to find 
the mapping information in the memory-resident page tables. A refill from the L2 TLB is much 
faster than a refill from cache or system memory (two cycles versus 90 cycles or more in the 
worst case when page information is read from DRAM). 
 
TLB behavior favors programs with good spatial and temporal locality and with a small virtual 
memory working set. 
 
 

4.4.1. Data TLB misses and miss ratio. 

 
Applicability. Take data TLB (DTLB) measurements for programs that operate on large data 
sets (like scientific applications involving large arrays) and programs with a non-uniform 
("random") data access pattern. 
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Collection. Measure DTLB behavior using these events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x40 N/A DC_accesses      Data Cache Accesses 

0x45 FAMDEP DTLB_L1M_L2H L1 DTLB Miss and L2 DTLB Hit 

0x46 FAMDEP DTLB_L1M_L2M L1 DTLB Miss and L2 DTLB Miss 

 

The unit masks for the DTLB miss events (select values 0x45 and 0x46) are processor family 

dependent (FAMDEP.). On AMD Family 10h processors, the unit mask values should be 0x07. 

Otherwise, the unit mask should be 0x00. 

 
We suggest a sampling period of 500,000 for retired instructions and data cache assesses. We 
recommend a sampling period of 50,000 for the DTLB miss events. 
 
Formulas. The DTLB-related events separate out L1 DTLB misses that are satisfied by the L2 
DTLB and cache/system memory. The L1 DTLB request rate is equal to the L1 data cache 
request rate since all virtual memory data addresses must be translated: 
 
  L1 DTLB request rate = DC_accesses / Ret_instructions 

 
The derived L1 DTLB miss measurements are: 
 
  L1 DTLB miss rate = (DTLB_L1M_L2H + DTLB_L1M_L2M) / Ret_instructions 
  L1 DTLB miss ratio = (DTLB_L1M_L2H + DTLB_L1M_L2M) / DC_accesses 

 
The L2 DTLB request rate is equal to the L1 DTLB miss rate since all L1 DTLB misses must be 
sent to the L2 DTLB: 
 
  L2 DTLB request rate = (DTLB_L1M_L2H+DTLB_L1M_L2M) / Ret_instructions 

 
The derived L2 DTLB miss measurements are: 
 
  L2 DTLB miss rate = DTLB_L1M_L2M / Ret_instructions 
  L2 DTLB miss ratio = DTLB_L1M_L2M / (DTLB_L1M_L2H + DTLB_L1M_L2M) 

 
Interpretation. Address translations that miss in the L1 DTLB and hit in the L2 DTLB are less 
severe than translations that miss both levels. If a translation misses both the L1 DTLB and the 
L2 DTLB, page information must be retrieved from either cache or system memory. This penalty 
is severe. 
 
The L2 DTLB miss rate indicates how frequently these kinds of misses occur during program 
execution. Consider a simple four-instruction loop that walks sequentially through a one-
dimensional array of 4-byte integers. Given a page size of 4 KBytes, it will take 1,024 iterations to 
walk through a single page of data in the array. Assuming that a DTLB miss occurs when 
touching the next page of data, then the DTLB miss rate is one DTLB miss per 4,096 retired 
instructions, or 0.00024. Sometimes the inverse of this rate -- 4,096 retired instructions per DTLB 
miss -- is easier to understand: a DTLB miss rate of 0.01 (100 retired instructions per DTLB miss) 
is clearly too high. 
 
Algorithms and coding techniques that improve data cache behavior generally improve DTLB 
behavior as well. Techniques that reduce the size of a program's virtual memory working set 
(e.g., packing frequently accessed data into a few pages) should help reduce the occurrence of 
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DTLB misses. Large pages (e.g., 2 MByte pages) may also improve the utilization of DTLB 
entries and reduce DTLB misses. 
 

4.4.2. Instruction TLB misses and miss ratio. 

 
Applicability. Instruction TLB (ITLB) misses may be a problem in large application programs that 
make calls between widely scattered subroutines, as in the case of procedures distributed among 
many different modules in memory. 
 
Collection. Collect data for these events to measure ITLB behavior: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x80 N/A IC_fetches       Instruction Cache Fetches 

0x84 N/A ITLB_L1M_L2H L1 ITLB Miss and L2 ITLB Hit 

0x85 FAMDEP ITLB_L1M_L2M L1 ITLB Miss and L2 ITLB Miss 

 

The unit mask for event select 0x85 is family dependent. For AMD Family 10h processors, the 

unit mask should be 0x03. Otherwise, the unit mask should be 0x00. 

 
We suggest a sampling period of 500,000 for retired instructions and instruction cache fetches. 
We recommend a sampling period of 50,000 for the ITLB events. 
 
Formulas. The L1 ITLB request rate is equal to the instruction cache request rate since the L1 
ITLB must be consulted whenever an instruction is requested: 
 
  L1 ITLB request rate = IC_fetches / Ret_instructions 

 
Derived measurements for the L1 ITLB are: 
 
  L1 ITLB miss rate = (ITLB_L1M_L2H + ITLB_L1M_L2M) / Ret_instructions 
  L1 ITLB miss ratio = (ITLB_L1M_L2H + ITLB_L1M_L2M) / IC_fetches 

 
The L2 ITLB request rate is equal to the L1 ITLB miss rate since all L1 ITLB misses must be 
passed to the L2 ITLB: 
 
  L2 ITLB request rate = (ITLB_L1M_L2H+ITLB_L1M_L2M) / Ret_instructions 

 
Derived measurements for the L2 ITLB are: 
 
  L2 ITLB miss rate = ITLB_L1M_L2M / Ret_instructions 
  L2 ITLB miss ratio = ITLB_L1M_L2M / (ITLB_L1M_L2H + ITLB_L1M_L2M) 

 
Interpretation. Misses in the L2 ITLB pay a higher penalty than misses in the L1 ITLB since page 
information must be retrieved from either cache or system memory. 
 
Developers can reduce ITLB misses by decreasing the size of the program's virtual memory 
working set. Place subroutines that call each other frequently in the same page or within only a 
few pages. Place infrequently executed code, like exception handlers, on separate pages, away 
from frequently executed instructions. 
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4.5. Control transfer. 
 
Part of maintaining the flow of instructions into the processing pipeline is the ability to handle 
potentially disruptive changes in control flow. AMD Athlon 64, AMD Opteron, and AMD Phenom 
processors provide logic to predict both the outcome and target address of conditional branch 
instructions. They also predict the target address of indirect branches and near returns. 
Instructions are issued speculatively based on these predictions. When the predictions are wrong, 
speculative work -- instructions on the "wrong path" -- must be discarded and the pipeline must 
be restarted with instructions on the correct control path. Recovery is expensive in terms of work 
discarded, wasted resources, and lost cycles while the pipeline is flushed and redirected. 
 

4.5.1. Branches. 

 
Applicability. Conditional branch mispredictions may be a significant issue in code with a lot of 
decision-making logic. Conditional branches may be mispredicted when the likelihood of choosing 
the true or false path is random or near a 50-50 split.  The branch prediction hardware cannot 
"learn" a pattern and branches are not predicted correctly. 
 
Collection. Collect the events in this table to measure branch prediction performance: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0xC2 N/A Branches       Retired Branch Instructions 

0xC3 N/A Mispred_branches 
Retired Mispredicted Branch 
Instructions 

0xC4 N/A Taken_branches Retired Taken Branch Instructions 

 
Formulas. Here are branch-related derived measurements: 
 
  Branch rate = Branches / Ret_instructions 
  Branch misprediction rate = Mispred_branches / Ret_instructions 
  Branch misprediction ratio = Mispred_branches / Branches 

 
Compute the rate at which branches are taken and the ratio of the number of instructions per 
branch using these formulas: 
 
  Branch taken rate = Taken_branches / Ret_instructions 
  Branch taken ratio = Taken_branches / Branches 
  Instructions per branch = Ret_instructions / Branches 

 
Interpretation. The branch rate is a measure of the relative frequency of branches in executed 
code. The branch rate will be relatively high in applications with a lot of decision-making logic. 
The branch misprediction rate indicates how often mispredictions are made for a given set of 
retired instructions. Ideally, this rate should be low. The reciprocal of this ratio -- retired 
instructions per mispredicted branch -- is sometimes easier to understand and apply. The branch 
misprediction ratio indicates how often branch instructions are mispredicted. This ratio should be 
as small as possible. 
 
Ideally, one would like to compute the branch misprediction ratio and branch taken ratio for 
individual conditional branch instructions. This would allow a developer to identify specific, poorly 
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predicted branches and improve their predictability. Unfortunately, skid does not allow precise 
attribution of branch events to individual instructions. 
 
The instructions per branch ratio indicates the number of straight-line instructions executed 
before encountering a potentially disruptive branch. The microarchitecture favors code with a high 
instructions-per-branch ratio. Developers can put more work through the pipeline before 
redirecting the pipeline to a different control path. Procedure inlining and loop unrolling may 
increase the number of instructions per branch. 
 
Improve performance by replacing branches with straight-line code wherever possible. This 
increases the instructions per branch ratio, too. Engineers and developers can sometimes 
eliminate conditional branches using conditional move instructions. 
 
Reduce branch mispredictions by increasing the likelihood of taking one direction of a branch 
over the other. Even a small increase in the likelihood (for example, from 49% to 51%) may be 
enough to increase prediction and performance significantly. 
 
 

4.5.2. Near return. 

 
Applicability. Near return mispredictions should be measured in programs that make frequent 
subroutine calls, that call a large number of different subroutines, or that use recursion 
extensively. 
 
Collection. Collect the events in this table to measure return prediction: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0xC8 N/A Near_returns      Retired Near Returns 

0xC9 N/A Mispred_near_ret Retired Near Returns Mispredicted 

 
Formulas. Derived measurements for mispredicted near returns are: 
 
  Near return rate = Near_returns / Ret_instructions 
  Return stack miss rate = Mispred_near_ret / Ret_instructions 
  Return stack misprediction ratio = Mispred_near_ret / Near_returns 

 
Estimate the number of instructions per subroutine call using this formula: 
 
  Instructions per call = Ret_instructions / Near_returns 

 
Interpretation. The microarchitecture uses a Return Address Stack to predict the target address 
of a near return. Return addresses are pushed onto the stack when a call is made and are 
popped to predict the destination of a return. When a return address is pushed and the stack is 
full, the stack overflows and discards the oldest entry. AMD Family 10h processors provide a 24-
entry Return Address Stack; the previous generation of AMD Athlon 64 and AMD Opteron 
processors uses a 12-entry stack. 
 
The return stack miss rate shows how often returns are mispredicted for a given set of retired 
instructions. Use the rate to judge the severity of return stack mispredictions. The return stack 
misprediction ratio indicates how often near returns are mispredicted. 
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Returns are mispredicted when the return stack is empty (stack underflow) or when there is an 
imbalance between calls and returns. Compilers sometimes remove returns through 
intraprocedural analysis. For example, if the compiler determines that a leaf procedure always 
returns up through a call chain to a particular ancestral procedure, then the compiler can 
generate a return directly to the ancestor. Return stack underflow may also occur with deep 
recursion. 
 
Further investigate return stack hits and overflows by measuring the events in this table: 
 

Event select Unit mask Event abbreviation Event 

0x88 N/A Ret_stk_hits Return Stack Hits 

0x89 N/A Ret_stk_overflow Return Stack Overflows 

 
 
 

4.6. Special cases. 
 
Measurements in this section deal with specific practical situations, including those that occur in 
scientific and engineering applications. 
 
 

4.6.1. Unaligned data access. 

 
Applicability. Most compilers align common types of data structures. Unaligned access to data 
items may occur in programs using dynamically allocated memory, pointer arithmetic, or packed 
data. Problems with unaligned data access are more likely in code written for and ported from 
another machine architecture. 
 
Collection. Measure the number and severity of misaligned data accesses using these events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x40 N/A DC_accesses      Data Cache Accesses 

0x47 N/A Misalign_access Misaligned Accesses 

 
Formulas. Developers can assess the performance impact of misaligned data accesses using 
these derived measurements: 
 
  Misaligned access rate = Misalign_access / Ret_instructions 
  Misaligned access ratio = Misalign_access / DC_accesses 

 
Interpretation. Developers can safely ignore the performance impact of infrequent misaligned 
accesses. If misaligned accesses are occurring within a hot spot, developers should eliminate 
them. 
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4.6.2. Floating point. 

4.6.2.1. Floating point operations. 

 
Applicability. Use these measurements to gauge the proportion (density) of floating point 
operations in an application program. 
 
Collection. Measure the occurrence of floating point operations and instructions with these 
events: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0x00 0x07 Dispatched_FP      Dispatched FPU Operations 

0xCB FAMDEP Ret_MMX_FP Retired MMX/FP Instructions 

 
Use the unit mask for the Dispatched FPU Operations event to select add, multiply, or store 

operations specifically. The unit mask for the Retired MMX/FP Instructions event (select 0xCB) is 

family-dependent (FAMDEP). On AMD Family 10h processors, the unit mask should be 0x07. 

Otherwise, the unit mask should be 0x0F. This unit mask can specifically select x87 instructions, 

MMX/3DNow!™ instructions, or SSE/SSE2 instructions, allowing analysis to focus on specific 
types of operations or instructions (see the appropriate, processor-specific BKDG for further 
configuration details). 
 
These events include non-numeric operations and cannot estimate the floating operations per 
second (FLOPS) rate of a program. 
 
Formulas. Derived measurements for FP-related instructions are: 
 
  FPU op rate = Dispatched_FP / Ret_instructions 
  FP/MMX rate = Ret_MMX_FP / Ret_instructions 

 
Interpretation. Assess the degree of floating point computation performed by an application 
using the FPU operation rate. Packed SSE family instructions offer higher performance than 
scalar SSE instructions or x87 floating point instructions. Choose compiler options to generate 
(packed) SSE instructions for floating point arithmetic. 
 
 

4.6.2.2. FLOPS rate. 

 
Applicability. The FLOPS rate is a common measure of floating point throughput; the high-
performance computing (HPC) community often uses it. 
 
Collection. AMD Family 10h processors provide a direct means to measure floating point 
operations. Compute the FLOPS rate using the events in this table: 
 

Event select Unit mask Event abbreviation Event 

0x76 N/A CPU_clocks CPU Clocks Not Halted 

0x03 0x47 SSE_SP_FLOPS 
Retired SSE Operations 
[Single precision] 

0x03 0x78 SSE_DP_FLOPS 
Retired SSE Operations 
[Double precision] 
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The unit mask values for the Retired SSE Operations event selects between single- and double-
precision floating point operations as performed by SSE instructions. The unit masks can also be 
used to break down floating operations by three categories: add/subtract, multiply, and 
divide/square root (see the BKDG for AMD Family 10h processors for further configuration 
details). 
 
CPU Clocks Not Halted is a high-frequency event and we recommend a sampling period of 
500,000 for this event. We suggest an initial sampling period of 50,000 for the Retired SSE 
Operations event. If the density of floating point operations is relatively high, increase the 
sampling period to 500,000. 
 
Formulas. These formulas give the single- and double-precision FLOPS rates: 
 
  Single precision FLOPS rate = SSE_SP_FLOPS / Seconds 
  Double precision FLOPS rate = SSE_DP_FLOPS / Seconds 

 
We estimate the elapsed time using the CPU Clocks Not Halted event: 
 
  Seconds = (CPU_clocks * Period) / Clock_frequency 
 
      Where Period is the sampling period, and 
            Clock_frequency is the platform CPU clock frequency 

 
Take care when measuring time with this event. The CPU run state and clock frequency throttling 
affect the CPU Clocks Not Halted event. We recommend using a more reliable time reference, 
such as the operating system clock or TSC. 
 
Interpretation. The FLOPS rate is a raw measure of floating point throughput and indicates the 
number of floating operations performed within a specific period of time. The FLOPS rate may 
vary across program phases and the program's ability to stream FP data from memory into the 
CPU affects it. A low FLOPS rate may indicate a problem with data layout, access pattern, or 
read latency, especially when the actual, measured memory bandwidth is low. 
 

4.6.2.3. Floating point exceptions. 

 
Applicability. Floating point exceptions occur to properly round a denormal or when an SSE 
operation has been supplied data of the wrong type. Only measure floating point exceptions if an 
application is performing a large number of floating point computations and, of course, ignore 
them in integer-only applications. 
 
Collection. Collect these events to detect the occurrence and severity of floating point 
exceptions: 
 

Event select Unit mask Event abbreviation Event 

0xC0 N/A Ret_instructions Retired Instructions 

0xCB FAMDEP Ret_MMX_FP       Retired MMX/FP Instructions 

0xDB 0x0F FPU_exceptions FPU Exceptions 

 
The unit mask for the FPU Exceptions event can isolate specific types of floating point 

exceptions. The unit mask for the Retired MMX/FP Instructions event (select 0xCB) is family 

dependent. On AMD Family 10h processors, the unit mask should be 0x07. Otherwise, the unit 

mask should be 0x0F (see the BKDG for configuration details). 
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Formulas. These measurements help determine the relative frequency of floating point 
exceptions: 
 
  Overall FP exception rate = FPU_exceptions / Ret_instructions 
  FP exception rate = FPU_exceptions / Ret_MMX_FP 

 
Interpretation. Microcode handles recovery from a floating point exception. This causes poor 
floating point performance; if the rate of occurrence is high, the developer should identify and 
correct the root cause. 
 
 

5. Example measurements. 
 
This section demonstrates the use of a few selected performance measurements to analyze the 
behavior of an application. 
 
In the white paper titled "An introduction to analysis and optimization with AMD CodeAnalyst," we 
analyzed the behavior of two versions of a short, easy-to-comprehend matrix multiplication 
program:  
 

http://developer.amd.com/pages/111820052_9.aspx 
 
We will use the same example programs here. The algorithm in the first version of the program 
uses the classic, textbook implementation of matrix multiplication. The second version of the 
program interchanges the order of the loop nest to improve the memory access pattern. The 
second version of the program runs much faster than the textbook implementation (2.1 seconds 
versus 12.6 seconds). 
 
We used AMD CodeAnalyst to collect the event data needed to compute efficiency, level 1 (L1) 
data cache, and DTLB measurements. We collected event data on an AMD Athlon 64 processor 
using AMD CodeAnalyst, which displays event profile data at the process, module, function, 
source, and instruction levels.  We used the events and computations described in Section 4 to 
compute derived measurements at the function level. The event counts and measurements 
reported in Subsections 5.1-5.4 of this paper reflect the behavior of the function 
"multiply_matrices" in the sample programs. 
 
 

5.1. IPC measurements. 
 
The ratio of instructions per cycle is the most basic measurement of computational efficiency. It 
indicates the degree to which the hardware is able to exploit instruction level parallelism in a 
program. 
 
To compute IPC, we collected data for Retired Instructions and CPU Clocks Not Halted 
(processor cycles) (see Section 4.2.1 for configuration information and other details). This table 
shows the event data collected for the multiply_matrices() function for both the "classic" and 
"improved" versions of the program: 
 

Event abbreviation Classic matrix multiply Improved matrix multiply 

CPU_clocks 506,251 samples 80,977 samples 

Ret_instructions 68,183 samples 88,124 samples 
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The number of processor cycles is much higher for the slower textbook implementation, as 
expected considering the longer execution time of that version of the program. 
 
After applying the formulas in Section 4.2.1, we obtain the comparison of relative performance 
shown in this table: 
 

Measurement Classic matrix multiply Improved matrix multiply 

Elapsed time (sec) 12.546 2.140 

IPC ratio 0.135 1.088 

CPI ratio 7.425 0.919 

 
If we were analyzing the classic program for the first time, its low IPC would have indicated the 
presence of a performance issue requiring investigation. The short stride access pattern 
implemented in the improved version of the matrix multiplication program dramatically improves 
the ratio of instructions per cycle (by a factor of eight). 
 
 

5.2. Memory bandwidth measurements. 
 
Memory bandwidth (discussed in Section 4.2.2) shows how effectively data is transferred to and 
from memory. The test platform was a 2.2 GHz AMD Athlon 64 with a single memory controller, 
using the same sampling period (50,000) for all four events collected by AMD CodeAnalyst: CPU 
Clocks Not Halted (processor cycles), System Read Responses, Quadwords Written to System, 
and DRAM Accesses: 
 

Event abbreviation Classic matrix multiply Improved matrix multiply 

CPU_clocks 505,137 samples 88,120 samples 

System_read 1,266 samples 1,256 samples 

System_write 169 samples 48 samples 

DRAM_accesses 1,292 samples 1,262 samples 

 
The number of read operation samples is roughly the same in both programs.  The smaller 
number of processor cycle samples reflects the shorter runtime of the improved matrix 
multiplication program.  With a smaller number of processor cycle samples, the bandwidth for the 
improved matrix multiplication is better than the classic textbook version of the program: 
 

Measurement Classic matrix multiply Improved matrix multiply 

Elapsed time (sec) 12.7960 2.1240 

Seconds 11.4804 2.0027 

Read bandwidth (MB/sec) 352.8797 2006.8907 

Write bandwidth (MB/sec) 5.8883 9.5871 

DRAM bandwidth (MB/sec) 360.1268 2016.4778 

 
 
 

5.3. L1 data cache measurements. 
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We know the classic textbook implementation of matrix multiplication to have a poor memory 
access pattern. The long stride through one of the argument arrays incurs a large number of data 
cache (DC) and data translation lookaside buffer (DTLB) misses. Both kinds of misses delay 
computation while reading data from the memory subsystem. 
 
Section 4.3.1 discusses L1 data cache analysis. We collected event data for Retired Instructions, 
Data Cache Accesses, Data Cache Refills From L2 Cache and Data Cache Refills From System: 
 

Event abbreviation Classic matrix multiply Improved matrix multiply 

Ret_instructions 68,184 samples 88,153 samples 

DC_accesses 401,893 samples 602,380 samples 

DC_refills_L2 45,533 samples 11,713 samples 

DC_refills_sys 12,526 samples 870 samples 

 
Approximately 4.6 times as many data cache misses occurred when running the classic matrix 
multiplication program compared to the improved version, even though the improved version 
actually accessed memory more often. These derived measurements reflect the higher request 
rate: 
 

Measurement Classic matrix multiply Improved matrix multiply 

Elapsed time (sec) 12.859 3.469 

DC request rate 0.589 0.683 

DC miss rate 0.085 0.014 

DC miss ratio 0.144 0.021 

 
An L1 data cache miss occurred every 11.8 (1/0.085) instructions in the classic version, while an 
L1 data cache miss occurred every 71.5 (1/0.014) instructions when running the improved 
version. 
 
 

5.4. DTLB measurements. 
 
To measure DTLB performance, we collected sample data for Retired Instructions, Data Cache 
Accesses, L1 DTLB Miss and L2 DTLB Hit, and L1 DTLB and L2 DTLB Miss events (see Section 
4.4.1). 
 

Event abbreviation Classic matrix multiply Improved matrix multiply 

Ret_instructions 68,180 samples 88,150 samples 

DC_accesses 402,415 samples 602,298 samples 

DTLB_L1M_L2H 59,532 samples 53 samples 

DTLB_L1M_L2M 157,529 samples 175 samples 

 
In their paper titled "On Reducing TLB Misses in Matrix Multiplication," Kazushige Goto and 
Robert van de Geijn assert that TLB misses are the limiting factor in fast matrix multiplication. The 
event data supports their claim. 
 
We derived these measurements from the event data: 
 

Measurement Classic matrix multiply Improved matrix multiply 
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Elapsed time (sec) 13.2340 3.4370 

L1 DTLB request rate 0.5902 0.6833 

L1 DTLB miss rate 0.3184 0.0003 

L1 DTLB miss ratio 0.5394 0.0004 

L2 DTLB request rate 0.3184 0.0003 

L2 DTLB miss rate 0.2310 0.0002 

L2 DTLB miss ratio 0.7257 0.7675 

 
The L1 DTLB request rate is higher for the improved version since it performs more memory 
access operations than the classic version. For the textbook program, an L1 DTLB miss occurs 
every 3.1 instructions and an L2 DTLB miss occurs every 4.3 instructions -- clearly unacceptable. 
The improved matrix multiplication program executes at least 3,300 instructions per DTLB miss. 
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